CSP Research Proposals 2025/26: Initial prioritisation

These tables summarise research proposals for delivery by the Conservation Services Programme in 2025/26, for consideration by the RAG. The proposals have been given initial prioritisation according to the framework described in the CSP Strategic Statement. Projects are ordered by ranking.

INT/ POP/ MIT	Title	Duration (yrs)	Cost per annum	Total cost	CSP Objective	Weighted score
INT-1	Observing commercial fisheries	1	N/A	N/A	А, В, С	-
INT-2	Species identification of camera-detected protected species captures in New Zealand fisheries	3	\$ 30,000	\$ 90,000	В,С	4.45
INT-3	Identification of seabirds captured in New Zealand fisheries	3	\$ 100,000	\$ 300,000	В, С	4.45
INT-4	Identification, storage and genetics of cold-water coral bycatch specimens	3	\$ 90,000	\$ 270,000	B,C, E	4.45
INT-5	Port-based audit and protected species retention programme	2	\$ 80,000	\$ 160,000	А, В, С	4-35
INT-6	Fishing operational factors influencing bycatch in trawl and set net fisheries	1	\$ 40,000	\$ 40,000	А, В	4.15
INT-7	Testing eDNA detection of protected species using passive samplers on trawl gear	1	\$ 90,000	\$ 90,000	В, С, D	4.15
INT-8	Examining recruitment dynamics and recovery potential from disturbance of deep-sea corals using ROV image data collected by RV Sonne in the New Zealand region	1	\$ 97,000	\$ 97,000	В, С, D	4.15

INT-9	Understanding fisheries overlap and interactions of protected gorgonians (order Alcyonacea), stony corals (order Scleractinia), and hydrocorals in the Fiordland Marine Area (FMA)	3	\$ 30,000	\$ 90,000	В, С, Е	3.90
INT-10	Understanding the extent and usage of coral rubble reporting codes by fisheries observers	1	\$ 20,000	\$ 20,000	В	3.55
INT-11	Fine-scale spatial analysis of fishing catch data in relation to New Zealand sea lion foraging areas and body condition.	1	\$ 24,500	\$ 24,500	D	3.30
POP-1	Southern Buller's albatross juvenile banding and tracking	3	\$ 50,000	\$ 150,000	E	3.80
POP-2	Black Petrel and flesh-footed Shearwater demographic modelling	2	\$ 40,000	\$ 80,000	E	3.75
POP-3	Black petrel monitoring	3	\$ 35,000	\$ 105,000	E	3.30
POP-4	Gibson's albatross research	3	\$ 40,000	\$ 120,000	E	3.30
POP-5	Updated population assessment for New Zealand fur seals on Bounty Islands from drone footage	1	\$ 10,000	\$ 10,000	E	3.25
POP-6	Salvin's albatross Western Chain research	1	\$ 40,000	\$ 40,000	E	3.25
POP-7	Great white shark population estimate	2	\$ 110,000	\$ 220,000	E	3.25
POP-8	White-capped albatross research	3	\$ 120,000	\$ 390,000	E	3.15
POP-9	Updated population assessment for New Zealand fur seal in New Zealand	1	\$ 100,000	\$ 100,000	E	3.10
POP-10	Chatham albatross research	2	\$ 50,000	\$ 80,000	E	2.90

POP-11	Antipodes albatross and white-chinned petrel research	3	\$ 120,000	\$ 360,000	Е	2.80
POP-12	Campbell Island seabird research	2	\$ 150,000	\$ 300,000	E	2.45
POP-13	Campbell Island seabird winter research	1	\$ 150,000	\$ 150,000	E	2.35
POP-14	Population growth, distribution and demographics of New Zealand sea lions in northern Stewart Island	3	\$ 20,296	\$ 60,888	E	2.35
MIT-1	Improving mitigation data streams to assess bycatch mitigation effectiveness in inshore and HMS fisheries	2	\$ 30,000	\$ 60,000	А, В, С	4.45
MIT-2	Seabird SMART Workshops	3	\$ 20,000	\$ 60,000	А	4.00
MIT-3	Assessing views on the value of corals to inform current and potential ecosystem-based fisheries management approaches	3	\$ 60,000	\$ 180,000	A	3.90
MIT-4	Using thermal cameras to assess effectiveness of seabird mitigation	1	\$ 50,000	\$ 50,000	А, В	3.45
MIT-5	Supporting uptake of sink rate assessment by fishers in BLL	2	\$ 40,000	\$ 80,000	А	3.45